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1. INTRODUCTION 

One of the main objectives of a sample sur- 
vey is the estimation of the population mean or 
total of a characteristic 'y' attached to the 
units in the population. Ratio estimators are 
among the most commonly used estimators of the 
population mean or total of 'y' utilizing an 
auxiliary characteristic 'x' that is positively 
correlated with 'y'. The precision of the regres- 
sion estimator is usually higher than that of the 
ratio estimator but in large -scale sample surveys, 
the ratio estimator is frequently employed because 
of its simplicity. In this paper, we develop some 
ratio -type estimators which will be more efficient 
than the customary ratio estimator and /or the un- 
biased estimator and yet computationally compar- 
able to the customary ratio estimator. 

We shall, without loss of lenerality, confine 
ourselves to the estimation of the population 
mean of 'y'. Further, to simplify the discussión, 

.we shall confine ourselves to simple random samp- 
ling and assume the population size is infinite. 
From a simple random sample of n pairs (yi,xi) we 

have the unbiased estimator of Y, as 

= E y./n. (1.1) 

i =l 

The customary ratio estimator of Y is 

r = = rX (1.2) 

where is the sample mean and X is the known 
population mean of x, and 

r = ÿ/x (1.3) 

is the ratio estimator of the ratio R = Y /X. 
It is well known that the ratio estimator 

r 
is more efficient than the unbiased estimator 
in large samples if p >Cx /(2Cy) where p is the 

coefficient of correlation between y and x and C 
and C are coefficients of variation of y and x y 
respectively. The question of choice between 
and r arises when it is suspeçted that p( is 

not high and /or Cy. The customary procedure 

in such situations is to use 
r 
when >Cx /(2Cy) 

otherwise use ÿ. It is, however, desirable to 
develop alternative ratio -type estimators which 
are more efficient than y as well as and yet 
computationally comparabli to ÿr. The two ratio - 
type estimators we propose are 

t1 = (1 -W)ÿ + Wÿ ; W 

and 

t2 = (1 -W)ÿ + W r *z; W;0 

where W is a constant weight 

r* = 2r - +r2) 

is obtained by splitting the 
two groups, each of size n/2 

j and i. are means of y and 

tained from jth half -sample. 

(1.4) 

(1.5) 

to be determined and 

(1.6) 

sample at random into 
and r. /z.,(j =1,2), 

x respectively ob- 

The estimator t1 
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reduces to and r when W =0 and 1 respectively. 

The estimator t2 reduces to when W =0 and when 

W =1 it reduces to r *X which is the 'Jack- knife' 
ratio estimator of Y. It may be mentioned here 
that by dividing the sample at random into g(6n) 
groups, each of size n /g, a more general form of 
the estimator t2 could be obtained as 

t2g °(1 -W)ÿ + W[gr- r.]X 
j =1 

where is the customary ratio estimator calcu- 

lated from the sample after omitting the jth 
group. However, in this paper we shall consider 
the special case of t2 given in (1,5), Srivastava 
(1967) proposed the estimator 

t3 = (1.7) 

where W is a constant weight and obtained its 
asymptotic variance. The estimator t2 was sugges- 

ted earlier by Chakrabarty (1968). In this paper 
these estimators will be compared regarding the 
properties pf bias and efficiency. In section 2, 

we discuss the asymptotic theory and in section 3 
we give the exact biases and variances of these 
estimators under a regression model. 

2. ASYMPTOTIC THEORY 

2.1 Biases of the estimators. 
It is obvious that the estimators t1, t2, and 

t are consistent but in general biased, like the 
ratio estimator yr. Now, as it is customary in 

the asympototic theory of ratio method of estima- 
tion, we shall assume that the sample size n is 
sufficiently large so that 

16x1 - X« 1 (2.I) 

Under the above assumption, the expected value of 
r is given by 

(CX-PCyCx) 2) 

Now, since r1 and r2 are independent 

E(r *) = R + 0(n -2) 

Consequently, the biases of t1 and t2 are 

Bias(ti) = W Bias 

= (C2- PC yCx) + 0(n -2) (2.2) 

Bias(t2) = 0 + 0(n -2) 

respectively. From Srivastava (1967), the bias 

t3 is given by 

and 

Bias(t3) = C -PC + 0(n2) (2.4) 

Thus, the asymptotic bias of t2 is of order n -2 

and hence smaller than that of ÿr, t1 and t3 



whose biases are order n-1. -The bias of t1 is 

smaller than that of r for <W <1. We note that 

0 when the regression of y on x passes 

through the origin. Consequently, for the impor- 
tant case of regression through the origin the 
estimators r and t1 are unbiased to terms of 
order n -1 but the bias of t3 is still of order 

n Further, substituting the formula for exact 
bias.of r from Hartley and Ross (1954) we get 

the exact bias of t1 as 

Bias(tl) = -W Cov(r,x) 

and 
WCx 

ñ (2.5) 

WC 
Thus if 

x 
< 0.1, the bias of t1 is negligible 

in relation to its standard error. No such upper 
bound to the bias of t3 relative to its standard 

could be obtained. 

2.2 Variances of the estimators. 
In deriving the variances of estimators tl, 

t2 and t3 we consider up to terms of n-1 only and 

biases which are of order n -1 are neglected. Ex- 
panding r and by Tylor's series in terms of 

and and 
=1,2) it can be shown that to 

terms of order n -1 the variances of t1, t2 and t3 

are identical and are given by 

S2 

V(tl) = V(t2) = V(t3) = - [1 +WK(WK -2P)] (2.6) 

where K = Cx /Cy. (2.7) 

The value of W which minimizes this variance is 

Wopt = P/K 

The minimum variance is given by 

S2 

Vmin 
-. 

(1 -P2) 

which is equal to the variance of 
gression estimator up to terms of 
stituting W =1 in (2.6) we get the 
as S2 

V(r) = [1 +K(K -2P)] 

(2.8) 

E1 > 1 if W < 2p/K 

and 
E2 > 1 if (2p-K)/K<W<1 (2.13) 

Thus the estimators t1, t2 and t3 are better than 

and r for a wide range of W- values. For ex- 

ample, if p =.6, K =1 and W is between 0.2 and 1 

estimators t1, t2 and t3 are asymptotically more 

efficient than and ÿr. The efficiencies E2 

of the estimators t1, t2 and t3 over and r will 
depend on p, K and the weight W. The numerical 
values of E1 and E2 for different values of p, K 

and for W =1/4 and W =1/2 are given as percentages 
in Tables 1 and 2 respectively. Comparing the 

results in the two tables we may conclude that if 
a good guess of p/K is not available from a pilot 

sample survey, past data or experience (1) W =1/4 

appears to be a good overall choice for tl, t2 

and t3 for low correlation (.2 <p <.4) and /or K>1. 

(2) W =1/2 appears to be a good choice for moderate 
to high correlation (p>.4) and K>1. (3) In cases 

where p >.8 and K <1 it is preferable to use ÿr. 

The asymptotic variance given in (2.9) of the es- 

timators t1, t2 and t3 with optimum value of /K 

is equal to the asymptotic variance of the linear 

regression estimator 

Rr b(X i) 
(2.14) 

where b is the sample regression coefficient. Thus 
these estimators with constant weights (W =1/4 or 

1/2) are asymptotically no more efficient than 
However, if the regression of y on x is not 

linear, Cochran (1963) has shown that the bias in 

is of order n -1 and hence it is more biased 

than t2 whose bias is of order n -2. Thus t2 may 

be preferable to in situations where freedom 

from bias is important. Moreover, computationally 
t2 is simpler than 

3. THE EXACT THEORY 

(2.9) We assume the following model for the compar- 

ison of estimators: 

the linear re- 
order n-1. Sub - 
variance of 

r 

(2.10) 

The asymptotic efficiencies of tl(t2 and t3) over 
and yr are given by 

V(y) _ 1 

E1 V(tl) [1 +WK(WK -2P)] 
(2.11) 

E - 
V(yr) [l +K(K -2P)] (2.12) 

2 V(t1) [1 +WK(WK -2P)] 

respectively. From (2.11) and (2.12) we get 

and 
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yi = + + ui; > 

E(uilxi) = 0, E[ui, = 

V(uilxi) = nd (S is a constant of order 

where the variates xi /n have the gamma distribu- 

tion with parameter h so that /n has the gam- 

ma distribution with the parameter m =nh. This 
model was used by Durbin (1959), and Rao and Web- 

ster (1966) to investigate the bias in estimation 
of ratios, and Chakrabarty and Rao (1967) to in- 

vestigate the stability of the 'Jack- Knife' var- 

iance estimor in ratio estimation. Chakrabarty 
(1973) has used this model to investigate the 
exact efficiency of the ratio estimator r and 



stability of the variance estimator of r relative 
to that of , He has shown that for p >.4 and K< 
2p the ratio estimator is generally more efficient 
than the unbiased estimator y even in small sam- 
ples, and that the variance estimator of the ratio 
estimator is generally more stable than the var- 
iance estimator of . It may be noted that all 
our results under this model are exact for any 
sample size, n. 

3.1 The exact biases of the estimators. 
In terms of the model (I) we have 

= + + 

E (y) = a + ßm = Y 

t1 = a(1-W + + ß[(1-W)x + Wm] 

+ ü{(1-W) + } (3.1) 

Consequently, the bias of t1 is 

Bias(t1) E(ti) - (a + ßm) 

= aW /(m -1) (3.2) 

t2 = a[(1- W) +Wm(2 - 
2_ - 

X 1 2 

+ -W)+ 2W!] 
2 

E(t2)= ßm +a[1- 2W /(m- 1)(m -2)] 

Thus the bias of t2 is 

Bias(t2)=- 2Wa /(m- 1)(m -2) (3.3) 

t3 = (a 

E(t3) = [ar(m- W) +ßr(m -W +1)] 

Consequently, the bias of t3 is 

Bias(t3)= 1] m] (3.4) 

Now, putting W=1 in either (3.2) or (3.4) we get 
the bias of as 

Bias(yr) = a /(m -1) (3.5) 

From (3.2) through (3.5) it can be seen that the 
bias of t2 is of order n -2 while those of 

t1 

and t3 are of order since m =nh in our model. 

Also, the bias of t1 is less than the bias of r 
if W <1. Further, for the special case of the lin- 

ear regression through the origin (i.e. a =0 in 
model I.) the estimators t1 and t2 are unbi- 
ased but t3 is still biased. A numerical evalu- 

ation of the biases of these estimators is given 
in the next section. 

3.2 The exact variances of the estimators. 
The method of obtaining exact expressions for 

the variances of these estimators under model I is 

similar to that of Rao and Webster (1966). The 
details of evaluating these variances, which in- 
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volve some algebra, are omitted and only the final 
results are given here. The variance of t1 can 
be shown to be 

22 
V(t 

W m a2+(1-W)2mß2 
1 (m_02011-2) 

W2m2 

+[ 
(m-1)(m-2) 

W(1- +l) 

(m ( 
1 

2W(1 -W)m aß (3.6) 
(m -1) 

Putting W =1 and W =0 in (3.6) the variance of 
and are obtained as: 

r 

2 2 2 V() m a 
(3.7) 

(m -1) (m -2) (m- 1)(m -2) 
and 

V(Y) = 6 + ß2m (3.8) 

respectively. The variance of t2 is obtained as 

V(t2) 
W2m2(m2 -6m + 17) a2 

1)2(m- 2)2(m_4) 

2W(1 -W)m(m -3)aß + (1- W)2m62 
(m- 1)(m -2) 

+[(1 -W)2+ 
W2(m2- 7m +18)m2 

(m- 1)(m- 2)2(m -4) 

2W(1- W)m(m -3)] 
6 

+ (m- 1)(m -2) 
(3.9) 

Finally, the variance of t3 is given by 

2Wr2( 
)]V(t3)= [r(m- 2W)r(m)- r2(m 

-W)]a2 

+[r(m +2- 2w)r(m)- r2(m +l 

+ 2[ r(m +1- 2w)r(m)- r(m +l- w)r(m -w)]aß 

+[r(m- 2W)r(m)].& (3.10) 

We note that in terms of the model I 

a = [(K -p) /K] 

= /(Km)] 

6 = 

and K = Cx /Cy 

The exact efficiencies of r and ti (i =1,2, and 3), 

relative to that of are given by 

Er = /MSE(yr) 

E. = V(ÿ) /MSE(ti) i =1,2 & 3 (3.12) 

Now, using (3.2) through (3.10) and substituting 
the values of a, and 6 given by (3.11) efficien- 

cies Er and E! (i= 1,2 &3) can be expressed expli- 

citly as functions of K= Cx /Cy, m =nh, p and weight 

W. However, it is difficult to investigate analy- 
tically the efficiencies of the estimators from 

the resulting expressions. Therefore, we have 
evaluated the values of and (percentages) 

for selected values of p, K and m and for W =1/4 
and 1/2. The results are given in Tables 3 and 4 
respectively. The results of Table 3 may be sum- 

(3.11) 



marized as follows: (1) The -ratio estimator 
r 

is less efficient than for low correlation 
(p <.4) except when p =.4, K <1 and m >20. (2) The 
estimators tl, t2 t3 with W =1/4 are more effic- 
ient than both y and r for the following values 
of p, K and m, (a) .2<p <.4, K <1, m >16. (b) .2<p< 

.4, K >l, m >32. Noting that in our model Cx =h-1 

C- =m -1/2 and n <m if h >1 we may conclude that for 

low correlation (.2 <p <.4), W =1/4 appears to be a 
good choice for estimators tl, t2, t3 even in 

small samples if K <1 and in large samples only 
when K >1. Further, the exact efficiencies of 
these estimators with W =1/4 are of the same order 
as judged by their mean square errors. 

From table 4, it can be seen that the esti- 
mators t1, t2 and t3 with W =1/2 are more efficient 

than both and r for p>.5, .25 <K <1.50 and m >16. 

However, the ratio estimator r is most efficient 
when =.9 and .5 <K <1. Thus, W =1/2 appears to be 
a good choice for estimators tl, t2, and t3 for 
moderate to high correlation (p>.4), except when 
p =.9 and .5 <K <1. The exact efficiencies of tl, 

t2 and t3 with W =1/2 are again generally of the 

same order. It is interesting to note that under 
model I the exact efficiencies of the estimators 
tl, t2 and t3 approach the asymptotic efficiency 

when m= nh >32. For example when p =.4 K =1.0, 

E1 =116 (table 1) =114, E2 =E3 =115 for m =32 

(table 3). 
We note from tables 3 and 4 that it is dif- 

ficult to choose among the estimators t1, t2 and 

t3 on the basis of their exact mean square errors. 

The absolute biases of estimators and t. rela- 
tive to their mean square errors aré givenlby 

Br = IBias(yr)I /[MSE(yr)]1 /2 

and 
Bi = IBias(ti)1/[MSE(ti)]1/2, i =1,2$3 (3.13) 

respectively. The numerical values of Br and Bi 

(i= 1,2$3) for W =1/4 and W =1/2 are given in tables 
5 and 6 respectively for selected values of m, K 

p. From table 5, it can be seen that B2 is 

generally less than 1 %; B1 is slightly greater 

than B3 but B1 is still less than 10% for m= nh >16. 

The ratio estimator r is generally badly biased 
(Br for K >1). From table 6, we find that B2 

<1% for K <1 and for K >l, B2 <2.5% when m >16. Tur- 
ning to the relative biases of t1 and t3 we find 

that B1 <B3 for K <1 and B1 >B3 for K >1. It is also 

interesting to note that although MSE(ÿr) <MSE(ti) 

for p =.9 and .5 <K <1 (table 4), Br in this case 

exceeds 10% and is considerably higher than Bi. 

Thus, for p =.9 and .5 <K <1, although MSE(ÿr) < 

MSE(ti), the estimators ti's may be preferable in 

situations where the freedom from bias is desir- 
able. 
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It may be noted that in surveys with many 
strata and small samples within strata the bias 
of the ratio estimator relative to its standard 
error may be considerable if it is appropriate to 
use 'separate' ratio estimators (see Cochran). 
In such situations it may be of great advantage 
to use the proposed estimators ti(i =1,2 and 3). 

These estimators not only reduce the bias but also 
increase the precision. 

In light of the above results we conclude 
that the three ratio -type estimators t1, t2 and t3 

are preferable to both and ÿr. The efficiencies 

of these estimators are the same in large samples 
and are practically of the same order in small 
samples. Computationally t1 is simplest and the 
bias of t2 is least. 

The author wishes to thank Dr. J. N. K. Rao 

for his valuable suggestions. 
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Table 1: Efficiencies, E1 and E2' of t1, (t2 and t3) over and r 
for selected values of p and K and W = 1/4. 

K=0.5 K=1.0 K=1.5 K=2.0 

E1 
E2 E1 E2 E1 E2 E1 E2 

.1 101 116 99 178 94 277 89 400 

.2 104 109 104 166 101 268 95 400 

.3 106 101 110 153 109 257 105 400 

.4 109 93 116 139 119 244 118 400 

.5 112 84 123 123 131 229 133 400 

.6 116 75 131 105 145 210 154 400 

.7 119 65 140 84 162 187 182 400 

.8 123 55 150 63 185 157 222 400 

.9 126 44 163 33 215 118 285 400 

Table 2: Efficiencies, El and E2, of tl, (t2 and t3) over and r 
for selected values of p and K and W = 1/2. 

K=0.5 K=1.0 K=1.5 K=2.0 

E1 E2 E2 
E1 

E2 
E1 

E2 

.1 99 114 87 157 71 209 56 256 

.2 104 109 95 152 79 210 62 262 - 

.3 110 104 105 147 90 211 71 271 

.4 116 99 117 141 104 213 83 283 

.5 123 92 133 133 123 215 100 300 

.6 '131 85 153 123 151 219 125 325 

.7 140 77 182 109 195 224 167 367 

.8 150 68 222 89 276 234 250 450 

.9 163 57 286 57 471 259 500 700 

Table 3: The exact efficiencies, E' and E!, of r and t. 

(i= 1,2,$3) with W = 1/4, for selected values of m, K p. 

m 

=.2 p =.3 p =.4 

E' 
1 

E' 
2 

E' 
3 

E' 
r 

E' 
1 

E' E' 
3 

E' 
r 

E' 
1 2 

E' 

8 .50 61 95 100 99 68 98 104 102 77 101 107 105 

1.00 37 93 96 98 43 99 102 104 51 106 109 111 

1.50 21 87 88 95 24 95 93 103 28 104 103 112 
16 .50 77 100 103 101 86 103 105 104 96 106 108 107 

1.00 49 99 102 101 56 105 107 107 66 111 114 113 

1.50 29 94 96 98 32 102 104 106 37 112 114 116 

20 .50 81 100 103 102 90 103 106 104 100 106 109 107 

1.00 51 100 102 102 59 106 108 107 69 112 114 114 
1.50 30 96 98 98 34 104 106 107 39 114 115 117 

32 .50 86 102 103 102 95 104 106 105 107 107 109 108 

1.00 55 102 103 103 63 107 108 108 74 114 115 115 

1.50 39 98 99 99 37 106 107 108 43 116 117 117 

Table 4: The exact efficiencies, Er and of r and ti 
(i= 1,2$3) with W = 1/2, for selected values of m, K p. 

m K 

=.5 p =.7 p =.9 

E' 
r 

E' 
1 

E' E' 
3 

E' E' 
1 

E' 
2 

E' 
3 

E' E' 
1 

E' 
2 

E' 
3 

8 .25 79 94 99 99 86 99 103 105 91 103 105 113 

.50 87 104 109 109 117 120 126 126 168 140 146 149 

1.00 62 106 105 116 105 152 152 162 324 260 262 269 

1.50 33 87 78 102 50 139 122 163 103 340 264 415 
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Table 4: (continued) 

m K 

p =.5 p =.7 p =.9 

E' 
r 

E' 
1 

E' 
2 

E' 
3 r 

E' 
1 

E' 
2 

E' E' 
r 

E' 
1 

E' 
2 

16 .25 100 103 108 106 111 109 114 112 123 115 120 120 
.50 109 114 119 116 147 130 136 113 222 152 157 156 

1.00 80 120 124 124 134 168 173 172 408 274 279 278 
1.50 44 105 107 112 67 167 168 179 139 409 391 444 

20 .25 104 105 109 107 117 111 115 114 130 118 121 121 

.50 114 116 120 117 154 133 137 135 234 155 159 158 

1.00 83 123 127 126 140 171 175 174 425 277 280 279 
1.50 46 108 111 114 70 173 175 182 146 422 410 450 

32 .25 111 108 110 109 125 114 117 116 142 121 124 123 
.50 121 119 121 120 164 136 138 138 252 158 161 160 

1.00 89 127 129 129 150 175 177 177 453 280 283. 282 
1.50 50 114 116 118 76 181 183 187 159 441 435 458 

Table 5: The absolute values of % Bias /(MSE)1 /2, Br and Bi of r and 
ti(i= 1,2, &3) with W = 1/4, for selected values of m, K & p. 

m K 

p =.2 p =.3 p =.4 

Br B1 B2 B3 Br B1 B2 B3 Br B1 B2 B3 

8 .50 9.48 2.96 1.01 1.07 6.68 2.00 .69 .18 3.55 1.02 .35 .74 

1.00 19.74 7.80 2.64 3.92 18.57 7.05 2.38 3.12 17.29 6.24 2.11 2.26 
1.50 25.02 12.31 4.06 6.65 24.57 11.88 3.91 6.01 24.15 11.42 3.78 5,33 

16 .50 7.03 2.00 .29 .74 4.94 1.35 .20 .10 2.62 .68 .10 .55 

1.00 14.90 5.31 .77 2.74 13.99 4.78 .69 2.16 12.99 4,22 .61 1.56 
1.50 18.56 8.42 1.22 4.67 18.22 8.10 1.17 4.21 17.91 7.77 1.12 3.72 

20 .50 6.34 1.77 .20 .65 4.46 1.20 .13 .09 2.40 .61 .07 .50 

1.00 13.50 4.71 .53 2.45 12.66 4.42 .48 1.93 11.77 3.74 .42 1.39 

1.50 16.85 7.48 .84 4.17 16.54 7.12 .81 3.76 16.25 6,90 .77 3.32 
32 .50 5.08 1.38 .09 .51 3.56 .93 .06 .06 1.88 .47 .03 .40 

1.00 10.86 3.68 .25 1.93 10.18 3.31 .22 1.52 9.43 2.92 .20 1.90 
1.50 13.62 5.86 .39 3.29 13.36 5.64 .38 2.96 13.12 5.40 .36 2.61 

Table 6: The absolute values of % Bias /(MSE)1 /2, Br and Bi of r and ti 
(i= 1,2,$3) with W = 1/2, for selected values of m, K and p. 

m K 

p =.5 p =.7 p =.9 

Br B1 B2 B3 Br 81 B2 B3 Br 81 B2 B3 

8 .25 8.99 4.89 1.67 5.71 16.86 9.04 3.09 9.71 25.11 13.36 4.49 13.98 
.50 0.00 0.00 0.00 2.29 8.75 4.42 1.51 6.62 20.97 9.57 3.25 11.73 

1.00 15.89 10.42 3.46 5.27 12.45 7.47 2.49 1.51 7.27 3.26 1.09 4.14 
1.50 23.15 18.80 5.95 12.10 22.88 19.04 5.94 10.58 24.55 22.36 6.56 9.29 

16 .25 6.67 3.39 .50 4.09 12.65 6.27 .91 6.92 19.25 9.31 1.36 9.96 
.50 0.00 0.00 0.00 1.68 6.48 3.05 .44 4.75 15.88 6.58 .96 8.34 

1.00 11.89 7.31 1.06 3.67 9.26 5.18 .75 .96 5.38 2.21 .32 3.05 
1.50 17.64 13.65 1.96 8.62 17.42 13.79 1.98 7.46 18.79 16.17 2.26 6,35 

20 .25 6.01 3.02 .34 3.67'11.44 5.59 .63 6.21 17.48 8.30 .94 8.92 
.50 0.00 0.00 0.00 1.51 5.85 2.71 .31 4.26 14.39 5.85 .66 7.47 

1.00 10.75 6.52 .74 3.27 8.37 4.61 .52 .83 4.85 1.96 .22 2.75 
1.50 16.00 12.25 1.38 7.71 15.80 12.38 1.38 6.67 17.06 14.50 1.59 5,64 

32 .25 4.81 2.37 .16 2.91 9.19 4.39 .30 4.92 14.14 6.53 .44 7.06 
.50 0.00 0.00 0.00 1.21 4.68 2.12 .14 3.38 11.59 4.59 .31 5.92 

1.00 8.63 5.14 .35 2.57 6.70 3.62 .24 .64 3.88 1.53 .10 2.20 
1.50 12.92 9.74 .65 6.11 12.75 9.83 .66 5.26 13.79 11.49 .76 4.40 
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